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Abstract

In surveilling a population, detection of systems with an attribute of in-

terest and estimation of the prevalence of the attribute in the population are

two main goals. Cost constraints may severely limit the fraction of systems

whose components can be sampled and tested. Biasing the sampling to in-

crease the probability of choosing a component with an attribute of interest

ameliorates the impact of reduced sampling. In this paper, we consider the

impact of biased reduced sampling on detection and propose an approach for

estimating the prevalence of the attribute in the population which properly

accounts for the biasing. The proposed method is illustrated with a simu-

lated example.
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metric distributions, MCMC.
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Introduction

Populations are surveilled to make sure they are healthy. For example, mis-

sile and weapon stockpiles are surveilled to make sure that they work when

needed. In surveilling a population, there are two goals: (1) detection – can

you find a system which has an attribute of interest? and (2) estimation – if

you find such a system, how many other systems in the population have this

attribute?

Surveillance can take the form of periodically sampling a number of sys-

tems from the population in which the sampling is completely random, i.e.,

each system in the population has the same probability of being chosen. For

multiple component systems, it may be too expensive to inspect every com-

ponent. Hence, for some components, only a subset of them can be tested

and these are sampled from the systems chosen in the original sample. To

support the detection goal, the reduced sampling can be ameliorated by bias-

ing the sampling to find components which have an attribute of interest. We

refer to this as biased reduced sampling. The sampling is still stochastic but

components with the attribute have a higher probability of being selected.

In this paper, first we consider the impact of biased reduced sampling on

detection. Next, we consider estimation of prevalence using such data for

which the biasing needs to be accounted. A Bayesian approach is proposed

and then illustrated with an example. The paper concludes with a discussion.
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Impact on Detectability of an Attribute

Consider a large population in which a portion p of the systems have an at-

tribute. Let n1 and n2 be the first and second stage sample sizes, respectively.

The first stage sample is completely random, i.e., unbiased. The second stage

sample is stochastic but systems with an attribute have a higher chance of

being selected. Suppose that we havem such samples in which yi, the number

of systems in the ith second stage sample with the attribute, are observed.

The following model is assumed for the first and second stage sampling:

Ki ∼ Binomial(n1, p), (1)

where Ki is the unknown number of systems out of n1 having the attribute

in the i’th first stage sample;

yi ∼ Extended− hypergeometric(Ki, n1 −Ki, n2, θ), (2)

where yi is the observed number of systems out of n2 having the attribute in

the second stage sample. When θ = 1, the extended-hypergeometric distri-

bution reduces to the hypergeometric distribution which holds for complete

random sampling. When θ > 1, systems with the attribute are favored in

the sampling. The probability mass function has the following form:

P (yi = y) =


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, (3)

for y = max(0, n2−n1+Ki), . . . ,min(n2, Ki). See Table 1 which demonstrates
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that when θ > 1, the probabilities for sampling a system with an attribute

is higher than for completely random sampling.

As an alternative, the noncentral-hypergeometric distribution arises when

systems with the attribute have weight ω, systems without the attribute have

weight 1 and systems are chosen with probabilities proportional to their

weights. The noncentral-hypergeometric probability mass function has the

form:

P (yi = y) =







Ki

y













n1 −Ki

n2 − y







∫ 1

0
(1− zωγ)y(1− zγ)n2−ydz, (4)

where γ = 1/(ω(Ki−y)+{(n1−Ki)−(n2−y)}). While the latter distribution

may be more interpretable, both distributions are similar when the first stage

sample contains equal number of systems with and without the attribute.

Note in Table 2 that the noncentral-hypergeometric probabilities are similar

when ω = θ for n1 = 10, K = 5 and n2 = 3 to the extended-hypergeometric

probabilities in Table 1. In making inferences with such data, we will see that

the extended-hypergeometric distribution is preferable because its probability

mass function involves a sum rather than an integral. The extended and

noncentral hypergeometric distributions are both discussed in Johnson and

Kotz (1969).

In surveilling a population, one rationale for determining a sample size is

as follows. If the proportion p is 0.10, what sample size is needed so that in

two years there is a 0.90 probability of randomly sampling a system with the

attribute? The corresponding sample size is 22 systems or 11 per year. To
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Table 1. Extended-hypergeometric Probabilities for n1 = 10, K = 5, n2 = 3
(θ = 1 is hypergeometric)

θ
y 0.1 0.5 1.0 1.5 2.0
0 0.645 0.205 0.083 0.043 0.026
1 0.322 0.513 0.417 0.324 0.256
2 0.032 0.256 0.417 0.487 0.513
3 0.001 0.026 0.083 0.146 0.205

Table 2. Noncentral-hypergeometric Probabilities for n1 = 10, K = 5,
n2 = 3 (ω = 1 is hypergeometric)

ω
y 0.1 0.5 1.0 1.5 2.0
0 0.684 0.223 0.083 0.039 0.020
1 0.290 0.522 0.417 0.310 0.246
2 0.025 0.232 0.417 0.492 0.514
3 0.0003 0.023 0.083 0.160 0.220

see the impact of reduced biased sampling when n1 = 11, see Table 3 which

presents the probability of sampling a system with an attribute when the

number of systems with attributes in the first stage sample is K = 1, . . . , 10

and a second stage sample of size one (n2 = 1) is taken.

To see the impact of reduced biased sampling on detection, we need to

evaluate the probability that a second stage sample contains at least one

system with an attribute for different proportions p. This probability can be

expressed as

P (yi ≥ 1) =
n1
∑

j=1

P (yi ≥ 1|Ki = j, n1, n2, θ)P (Ki = j|p, n1), (5)

where the first term is the sum of extended-hypergeometric probabilities and
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Table 3. Probability of sampling a system with an attribute in the second
stage when n2=1 for first stage where n1=11 and K is the number of

systems with an attribute (θ = 1 is hypergeometric)

θ
K 0.1 0.5 1.0 1.5 2.0 5.0 10.0
1 0.010 0.048 0.091 0.130 0.167 0.333 0.500
2 0.022 0.100 0.182 0.250 0.308 0.526 0.690
3 0.036 0.158 0.273 0.360 0.429 0.652 0.789
4 0.054 0.222 0.364 0.462 0.533 0.741 0.851
5 0.077 0.294 0.455 0.556 0.625 0.806 0.893
6 0.107 0.375 0.545 0.643 0.706 0.857 0.923
7 0.149 0.467 0.636 0.724 0.778 0.897 0.946
8 0.211 0.571 0.727 0.800 0.842 0.930 0.964
9 0.310 0.692 0.818 0.871 0.900 0.957 0.978
10 0.50 0.833 0.909 0.937 0.952 0.980 0.990

the second term is a binomial probability. See Table 4 which provides these

probabilities for n1=11 and n2 = 1, 4, 7 for various proportions p and biasing

determined by θ. The first stage probabilities are given in parentheses. Table

4 shows that biasing the second stage samples helps to ameliorate the reduced

sampling; for example, when θ = 5 and n2 = 7 the detectability is no more

than 0.04 less than if n2 = 11.

Estimation of Prevalence

In this section we consider estimation of p using biased reduced sampling

data. We assume the statistical model given in the previous section for m

second stage samples yielding the data y1, . . . , ym. Without some completely
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randomly sampled data, there is no information about the amount of biasing

θ. Hence, we must perform the estimation with a specified value of θ > 1.

To do the estimation, we propose using a Bayesian approach.

Bayesian inference provides uncertainty about the unknowns

η = (p,K1, . . . , Km) through their joint posterior distribution. It does so by

combining prior information about η with the information about η contained

in the data. The prior information is described by a probability density π(η)

known as the prior density and the information provided by the data is

captured by the data sampling model f(y|η) known as the likelihood. The

combined information is then described by another probability density π(η|y)

called the posterior density. Bayes Theorem provides the way to calculate

the posterior density, namely,

π(η|y) ∝ f(y|η)π(η). (6)

For this problem, we only need to specify a prior distribution for p since

the Ki are specified by (1) and the likelihood is given by (2). We use the

following prior:

p ∼ Beta(a0, b0), (7)

for specified a0 and b0.

Because there are m+1 parameters, we employ an appropriate MCMC

(Markov Chain Monte Carlo) method to sample the joint posterior distribu-

tion (Gelman et al., 1995) from which inference about the unknown param-

eter of interest p can be made. For example, the Metropolis-Hastings algo-

rithm (Chib and Greenberg (1995)) combined with Gibbs sampling (Casella

and George (1992)) provide a general way to sample from the joint posterior

distribution.

7



If some of the second stage samples are completely random, then a com-

parison between the completely random and biased random samples provides

information about θ. For completely random samples,

yri ∼ Hypergeometric(Ki, n1 −Ki, n2). (8)

Also, we need to specify a prior for θ such as

θ ∼ 1 + Lognormal(0, t0), (9)

which is defined on (1,∞). This assumes that in the second stage, systems

with an attribute have a higher probability of being chosen. To be more

conservative and also allow for the possibility of systems with an attribute

having a lower probability of being chosen, the prior

θ ∼ Lognormal(0, t0) (10)

can be employed. Then we apply Bayes Theorem as before using the appro-

priate MCMC method to provide inference about p and θ.

An Example

To illustrate the estimation of prevalence, first consider the case when θ is

known. Suppose that θ = 4. Table 5 presents simulated data for m = 15

samples when p = 0.20. Note that the Ki (number of systems in the first

stage sample with an attribute) are unknown and only the yi (number of

systems in the second stage sample with an attribute) are observed.
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Figure 1: Posterior for p for known θ = 4.

The Bayesian analysis described in the previous section was performed

on these data using a Beta(0.5, 0.5) prior for p; i.e., a non-informative prior

for p. We implemented the MCMC algorithm using the YADAS statisti-

cal modeling environment (Graves, 2001, 2003a,b). WinBUGS (Spiegelhal-

ter, Thomas, and Best (2000)) was not used because it cannot handle the

extended-hypergeometric distribution. See the posterior obtained for p in

Figure 1. The posterior 0.05, 0.50, 0.95 quantiles for p are 0.183, 0.226,

0.291, respectively. Thus, an estimate for p using the median of the poste-

rior is 0.226 compared with the true p of 0.20. Estimates of the Ki are also

obtained in case they are of interest.

Consider what would have happened if the biased sampling in the second

stage had been ignored. There are 25 out of 60 systems with the attribute

in the second stage samples which yields an estimated p of 25/60 = 0.417,

an overestimate.
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Figure 2: Posterior for p when θ is unknown.

Now consider the situation where θ is not known, but some second stage

samples are available which are completely random. See Table 6 which

presents 10 completely random second stage samples. The comparison be-

tween the biased and unbiased second stage samples allows θ to be estimated.

A Bayesian analysis was performed using the following priors:

p ∼ Beta(0.5, 0.5) and θ ∼ Lognormal(0, 1).

See the resulting posteriors for p and θ in Figures 2 and 3. The posterior

0.05, 0.50, 0.95 quantiles for p are 0.178, 0.240, 0.340, respectively. Thus an

estimate for p using the median of its posterior is 0.240 as compared with

the true p of 0.20. The posterior 0.05, 0.50, 0.95 quantiles for θ are 1.508,

3.337, 7.435, respectively, as compared with the true θ of 4.
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Figure 3: Posterior for θ.

Discussion

In this paper, we have shown how reduced sampling can be ameliorated by

biasing; i.e., systems with an attribute of interest have an increased proba-

bility of being sampled. The biasing if ignored causes problems in estimating

the prevalence of the attribute in the population. We have shown how a

Bayesian approach easily accounts for the biasing when either the extent of

the biasing is known or if unknown unbiased data are also available which

allow the extent of the biasing to be estimated.

In the example, we assumed that all the first stage samples were the

same size as well as second stage samples. This need not be and yet the

proposed Bayesian approach handles such unequal sample size situations.

In this paper, we assumed that the surveilled population is large so that the

number of systems with an attribute in the first stage samples approximately

follows a binomial distribution. A topic of future research is to consider
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a small population in which the first stage completely random sample is

modeled by a hypergeometric distribution.
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Table 4. Reduced Biased Sampling Plan Properties
(Table entry is probability that at least one system in second stage sample
has an attribute. Probability that at least one system in first stage has an

attribute when n1 = 11 is given in parentheses.)

p=0.05 (0.431)
θ

n2 0.1 0.5 1.0 1.5 2.0 5.0 10.0
1 0.006 0.027 0.050 0.070 0.088 0.165 0.237
4 0.031 0.119 0.185 0.228 0.258 0.340 0.380
7 0.087 0.234 0.302 0.335 0.354 0.397 0.413

p=0.10 (0.686)
θ

n2 0.1 0.5 1.0 1.5 2.0 5.0 10.0
1 0.012 0.055 0.100 0.138 0.170 0.300 0.411
4 0.067 0.233 0.344 0.411 0.456 0.571 0.624
7 0.182 0.425 0.522 0.566 0.592 0.645 0.665

p=0.15 (0.833)
θ

n2 0.1 0.5 1.0 1.5 2.0 5.0 10.0
1 0.019 0.085 0.150 0.202 0.246 0.411 0.540
4 0.106 0.339 0.478 0.556 0.606 0.726 0.777
7 0.281 0.577 0.679 0.723 0.748 0.797 0.814

p=0.20 (0.914)
θ

n2 0.1 0.5 1.0 1.5 2.0 5.0 10.0
1 0.027 0.116 0.200 0.265 0.317 0.502 0.636
4 0.151 0.439 0.590 0.670 0.719 0.829 0.871
7 0.375 0.695 0.789 0.827 0.848 0.887 0.901
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Table 5. First and second stage sample data when m = 15, p = 0.20, θ = 4

Sample n1 K n2 y
1 11 3 4 2
2 11 3 4 2
3 11 4 4 2
4 11 1 4 1
5 11 4 4 2
6 11 0 4 0
7 11 3 4 1
8 11 1 4 0
9 11 5 4 4
10 11 2 4 2
11 11 3 4 2
12 11 2 4 2
13 11 2 4 2
14 11 2 4 0
15 11 4 4 3

Table 6. First and second stage sample data when m = 10, p = 0.20, θ = 0

Sample n1 K n2 y
1 11 1 4 0
2 11 0 4 0
3 11 2 4 1
4 11 2 4 0
5 11 7 4 3
6 11 1 4 1
7 11 4 4 2
8 11 2 4 0
9 11 1 4 0
10 11 3 4 0
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